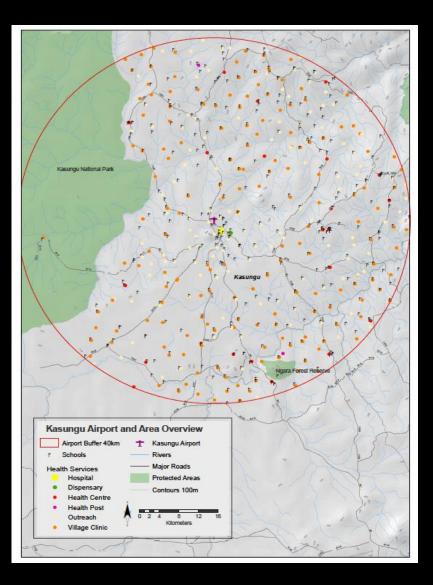

DATA INNOVATIONS FOR CHILDREN IN MALAWI



GEO-SPATIAL ANALYSIS, DRONES & MACHINE LEARNING

AS TOOLS FOR DEVELOPMENT & HUMANITARIAN REPSONSE

WHY INNOVATE IN MALAWI

CHALLENGES AFFECTING CHILDREN & THEIR FAMILIES:

- One of the poorest countries in the world
- Over 80% of the population live in rural areas

Health

- High maternal mortality rate
- Malnutrition, malaria, HIV/AIDS
- Cholera outbreak

Emergency & Climate Change

- Annual flood, annual famine
- Lack of access to water

Need to work beyond business as usual!

The role of drones

IMAGERY

Landslide risks Water resources Damage assessments Counting Displaced people

CONNECTIVITY

Post-emergency cell/Wi-Fi Air Coordination UTM

TRANSPORT

Supply Chain efficiency Rapid disease diagnosis

TRANSPORT

NALWING THE REAL

-E

- Contraction

CONNECTIVITY

2 Martin and all

地界 新聞 化二丁

-

DRONES + MACHINE LEARNING

GLO

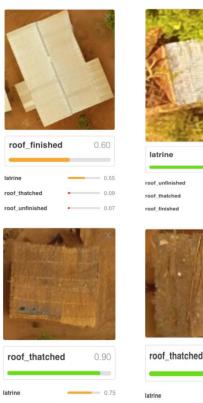
GLOBHE & IBM WATSON

•

- Tests in the Malawi drone testing corridor
- focuses on technology for imagery & mapping;
- Feeds drones captured images to *IBM Watson* to recognize different
 plants and seasonal changes
 through AI and image recognition

ORTHOMOSAIC KASUNGU

The Kasungu site is a densely populated urban area, covering several neighborhoods, parts of major road network and infrastructure (e.g schools, health delivery points, house of worship).


Area:7.15 km²Images:6082Size of data:5.3MB per imageNumber of flights:27 in order to generate the desired2D and 3D maps

Processing time: The actual processing time has been between 5 - 10 min per image due to limited internet connectivity at that time which was heavily attributed by the power situation

IMAGE ANALYSIS – How Does It Work?

Artificial Intelligence (aka algorithms) gets trained to recognize certain features in pictures through the use of "classifiers" and applies this logic to new pictures

oof unfinis

roof unfinis

10.45	10	
A	a set	1
H6 1	-1-1-	N.
SIL .	- 14 M	
3163	SAL.	ditre
States and a local division of	and the second second	
A COLOR	1 L L L L L	1
1		No.
trine		1.00
atrine		1.00
atrine		1.00
		_

- Tin Roofs
- Thatched Roofs
- Outdoor Sanitation

School

IMAGE ANALYSIS – Data Generation

This process helps to generate (statistical) data out of pictures and helps you to draw conclusions and make according recommendations

For example: **SDG Indicator 6.2.1** - Proportion of population using safely **managed sanitation services**, including a hand-washing facility with soap and water

The map shows latrines with a 50m radius circle and provides an insight into the access to sanitation in this area.

At this test, the confidence level is at 70% as some detections might be missing (or falsely detected) - but with more training time the accuracy will improve.

DATA FOR CHOLERA RESPONSE

GEO-SPATIAL + DRONES + MACHINE LEARNING APPLICATIONS

1. Community sensitization

2. Drone data acquisition

2a. Drone acquired imagery used for community engagement

3. Ground truth data acquisition by LUANAR students (sample of data on cholera related features)

6. Results dissemination

5. Data analysis and identification of potential cholera hotspots

4. Artificial Intelligence used to identify cholera related features

Questions & Feedback

Thank you from UNICEF Malawi

Michael Scheibenreif

mscheibenreif@unicef.org