

Satellite Earth Observation & Disaster Risks

ESA's overview of EO capabilities for Disaster Risk Management Philippe Bally, European Space Agency

2012

What the European Space Agency does in DRM:

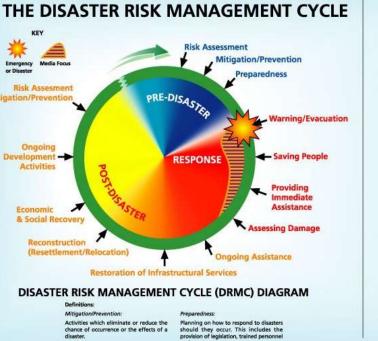
- ESA is taking part to international collaborations concerning DRM
- one of the founders of the International Charter Space & Major Disasters (2000)
- it is part since 2011 of the CEOS Ad Hoc team on DRM (with 9 other space agencies) looking at enlarged actions augment/accelerate how EO can contribute to DRM

International Charter Space & Major Disasters (CHARTER)

Global Earth Observing System of Systems (GEOSS)

Global Monitoring for Environment & Security (GMES)

Integrated Global Observation Strategy (IGOS)


Committee for Earth Observation Systems (CEOS)

EO capabilities & DRM cycle (all hazard types)

• Emergency Response,

- Rapid Crisis Mapping & Damage Assessment,
- Situation Mapping.
- Prevention, Preparedness, Recovery, Reconstruction
 - Detailed Damage Mapping,
 - Risks Assessment. (Floods, Fires, Geo-Hazards)
- All phases
 - Reference Mapping,
 - Digital Elevation and Digital Terrain models,
 - LU/LC cover Mapping,
 - Asset Mapping.

EO techniques (in red) both in response phases and other phases of risk management (such as prevention)

3 stages of DRMC

- PRE-DISASTER
- Risk Assessment
 Mitigation/Prevention
- Preparedness

DISASTER RESPONSE

- Warning/Evacuation
- Saving People
- Providing
- Immediate
- Assistance
- Assessing Damage

POST-DISASTER

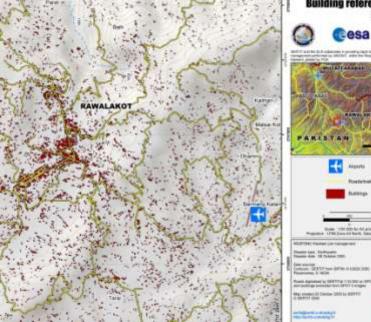
- Ongoing Assistance
- Restoration of Infrastructural Services
- Reconstruction
 (Resettlement
 /Relocation)
- Economic & Social Recovery
- Ongoing Development Activities
 Pisk Assessment
- Risk Assessment Mitigation/Prevention

Satellite EO can help science & operational users in:

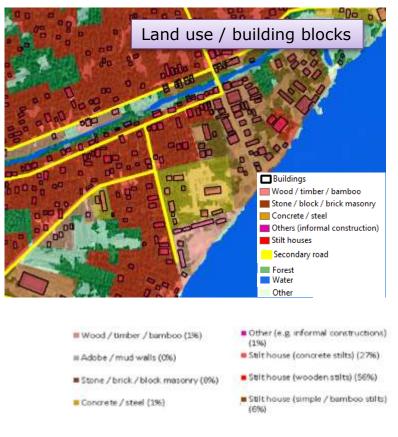
1. Exposure/Asset mapping/Asset modeling

A wealth of information types (many areas)

- **2.** Hazard mapping for instance:
 - . scientific data to better characterize/monitor hazards

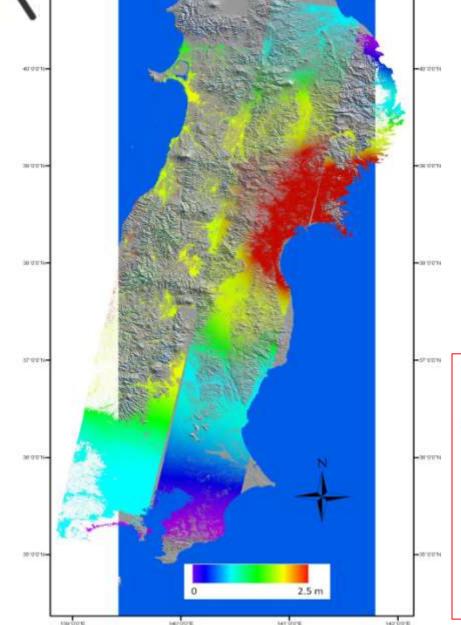

. operations: low level of sophistication but rapid information on the hazard impact (and damage zoning)


. operations: sophisticated information on hazard/risk (e.g. risk inventory)


Urban mapping of buildings & infrastructure

Land use map with building and infrastructure inventory over Cambodia:

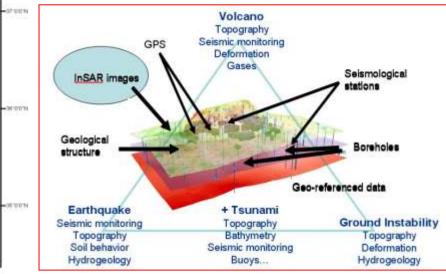
- Infrastructure and building inventory on building block level
- Database of building parameters & construction classes
- 86% of the buildings are small structures < 100 m²
- 90% of the settlement area are low-density stilt-houses with 2 stories and a distance of < 100 m to a road



Mapping Global Risk

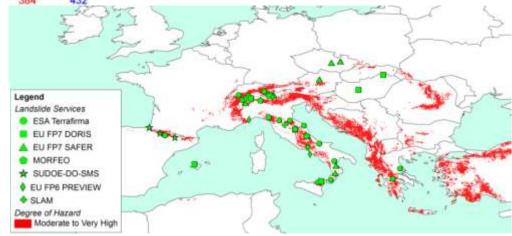
Copyright: GeoVille for ESA / World Bank

Tohoku Oki EQ: SAR Interferometry for science

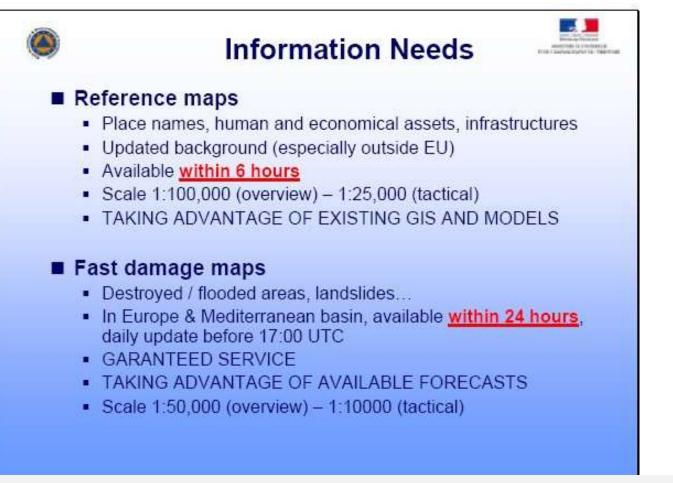


Interferogram processed by INGV using 3 post-Earthquake acquisitions from ENVISAT ASAR & reference data (800+km segment, tracks from E to W: 74, 347 & 189)

Displacement map

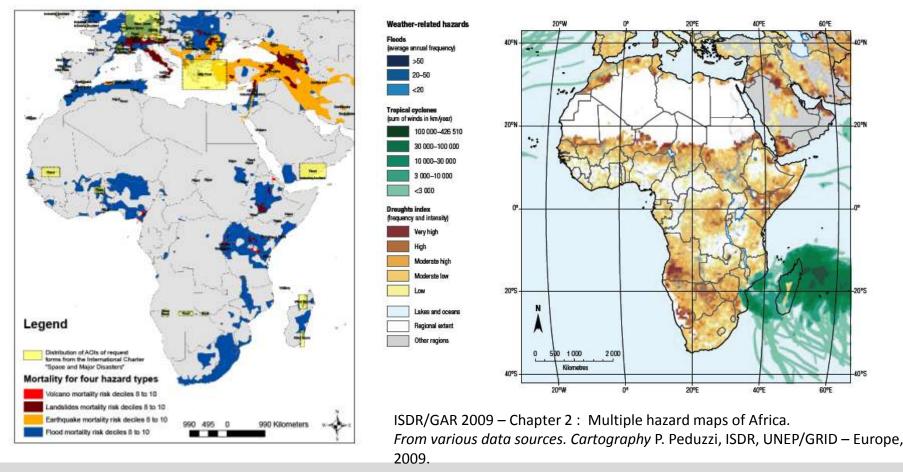

(scale: 0-2.5m, line-of-sight measurement)

Credits: INGV, ENVISAT Data: copyright ESA; INGV is the Tectonics Theme Leader of ESA's project Terrafirma.


Landslide Displacement Monitoring **PROFILE 5** Inclinometer 27 1 11 11 190 ELEVATION (m a.s.I.) Incl.27 Incl.10 Rupt. Surf.= 4, 13 m Rupt. Surf.= 7 m Incl.18 Rupt. Surf.= 3 m 160 Legend 130 PS Vel. (mm/y) -29.18 - -5.00 4.99 - -3.00 -2.99 - -1.25 -1.24 - 1.25 100 1.26 - 3.00 3.01 - 5.00 5.01 - 29.05 336 144 192 240 288 384 DISTANCE (m)

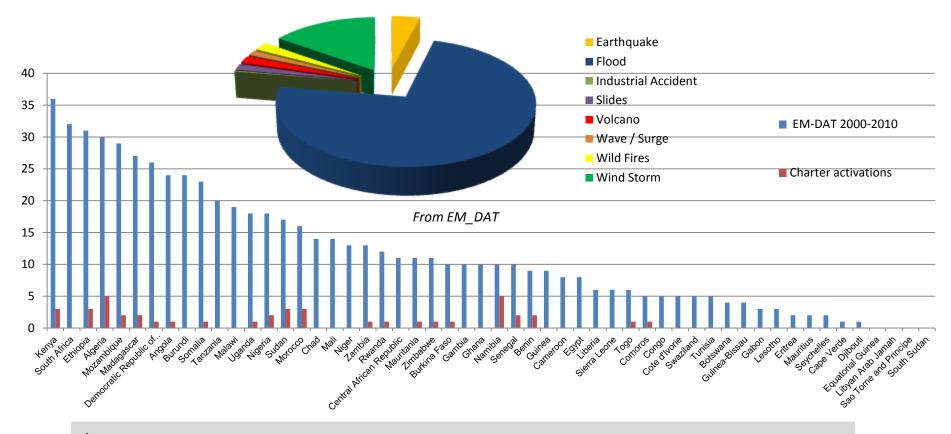
Left: geologic information integrated with ground measurements (inclinometer readings) and PS-derived information, to define or refine a model of an existing landslide. Right: This product has been used by the Arno AdB to refine the limits of the Risk-zones for which it is legally responsible (Carbonile: Red: previous R3/4 area, Pink: revised R3/4 area). Credits: TRE Europa, UNIFI.

- An <u>International agreement among Space</u> <u>Agencies</u> to support with space-based data and information relief efforts in the event of emergencies caused by major disasters.
 - Disaster response
 - Multi-satellite data acquisition planning
 - Fast data turn-around priority acquisition
 - Archive retrievals and spacecraft tasking
 - Data processing at pre-determined level
 - Space Agency contribution in image/data
 - Space Agency initiative for value-added-data fusion


Information needs for crisis/damage mapping:

- weather-related hazards such as Floods, Forest Fires, Ice Jams, Landslides, Storms (e.g. hurricanes, cyclones, typhoons, tornados)
- **geo-hazards** such as Earthquakes (and landslides), Tsunamis (provoked by submarine earthquakes), Volcanic eruptions.
- technological disasters such as Oil Spills due to platforms or ships accidents.

Hazard types in Africa:


Distribution of disaster risks in Africa

- Hydro-meteorological hazards (drought, flood, tropical cyclone) are much more present & frequent than geo-hazards (earthquakes, volcanoes, landslide).
- epidemics and insect infestations (in particular in the Sahel region) are other causes of disasters with high impact on population.

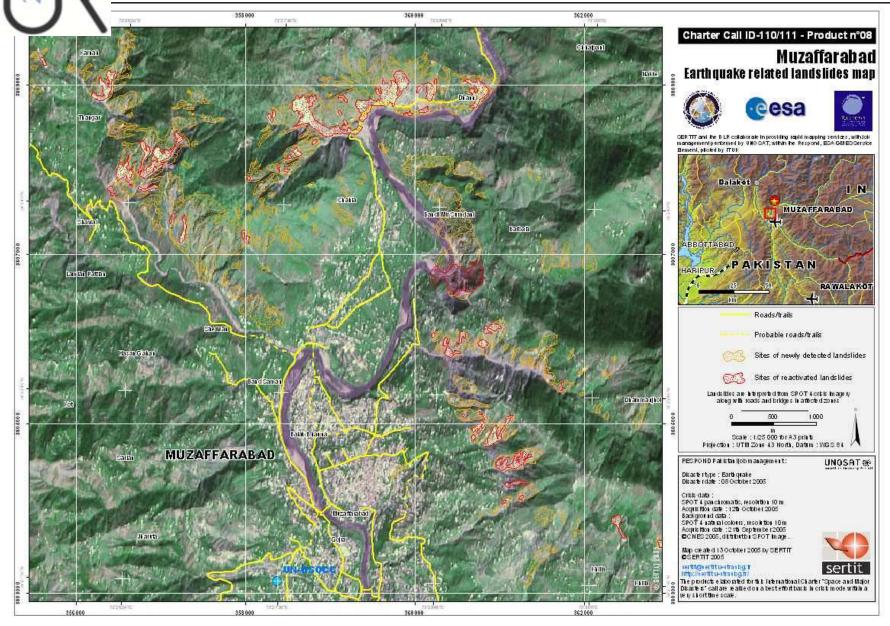
Africa: Charter activations (2000-2011)

41 Charter activations in Africa, 22* of 54 countries have benefited from the Charter.

*Kenya, Algeria, Ethiopia, Mozambique, Madagascar, DRC, Angola, Somalia, Uganda, Nigeria, Sudan, Morocco, Zambia, Rwanda, Mauritania, Zimbabwe, Burkina Faso, Namibia, Senegal, Benin, Togo, Comoros.

- Disaster Management Authorities from countries of Charter member agencies (40 countries today).
- for emergencies in their own country, in another country with which they cooperate for disaster relief.
- UN relief agencies can also activate the Charter via UNOOSA and UNITAR/UNOSAT

- ✓ Charter members, conscious of the need to improve Charter access globally, have adopted the principle of Universal Access, <u>extending direct access to new countries</u>:
 - any national disaster management authority is able to request emergency response, provided conditions and procedures are met
 - **Conditions** :
 - The entity must be a national disaster management authority or its delegated agency in that country
 - The entity must have the capacity to download and utilize maps *
 - The entity must be able to submit and pursue its activation requests in English.
 - * either remotely sensed imagery or derived products or VA products (e.g. crisis or damage assessment maps).

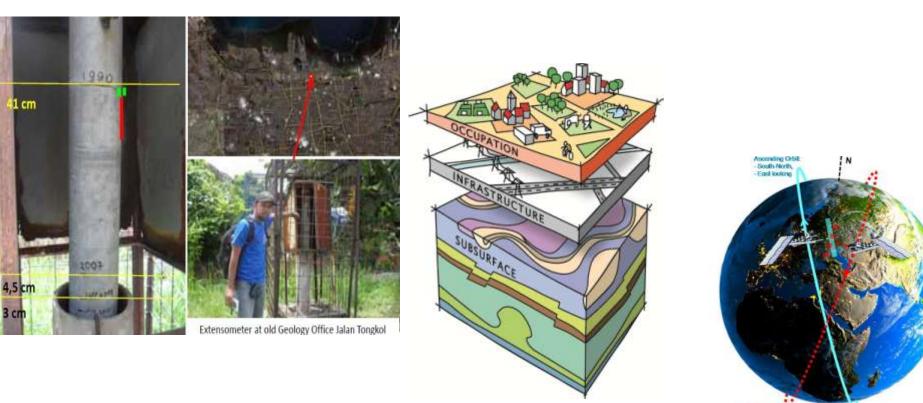

List of National Authorities met (2009 – 2012)

Country	National Disaster Management Authority (DMA)	Other organisations
Ethiopia	Early Warning and Response Directorate	_
Uganda	Department of Disaster Management, Office of the Prime Minister	_
South Africa	National Disaster Management Center (NDMC)	4 nat. Org (among them CSIR/SAC)
Mozambique	Istituto Nacional de Gestão de Calamidades INGC (National operational Centre for Emergency)	8 nat. org; 7 intern/humanitarian org.
Mali	Department of Civil Protection – Min. Sécurité Intérieure et de la Prot, Civile	2 nat.org
Niger	Prime Minister Office/ Early Warning System	4 nat. org.
Namibia	Office of the Prime Minister/ Directorate Disaster Risk Management (OPM/ DDRM)	12 nat. org 2 Intern/humanitarian org
Zambia	Disaster Management and Mitigation Office of the Vice President	4 nat. org
Senegal	Senegal Forum for DRR / Ministry of Interior/ Fire Brigade	11 nat. org. 1 Intern/humanitarian org
Burkina Faso	CONASUR (Conseil National de Secours d'Urgence et de Réhabilitation)	20 nat.org, 4 international /humanitarian org
Democratic Republic of Congo	Civil Protection Department	8 nat.org, 1 international /humanitarian org
Kenya	National (Disaster) Operation Centre (NDOC) - Office of the President	4 nat.org, 1 regional org,, 2 international /humanitarian org
Tanzania	Disaster Management Department, Prime Minister' s office	9 nat.org, 1 international /humanitarian org
Madagascar	Bureau National de Gestion des Risques et Catastrophes - BNGRC	7 nat.org, 4 international /humanitarian org
Botswana	National Disaster Management Office - NDMO	11 nat. org, 1 reg org (SADC)

.....A few illustrations of how Satellite data can contribute to different phases of risk management.....

Asian EQ of Oct'04: Landslides Map

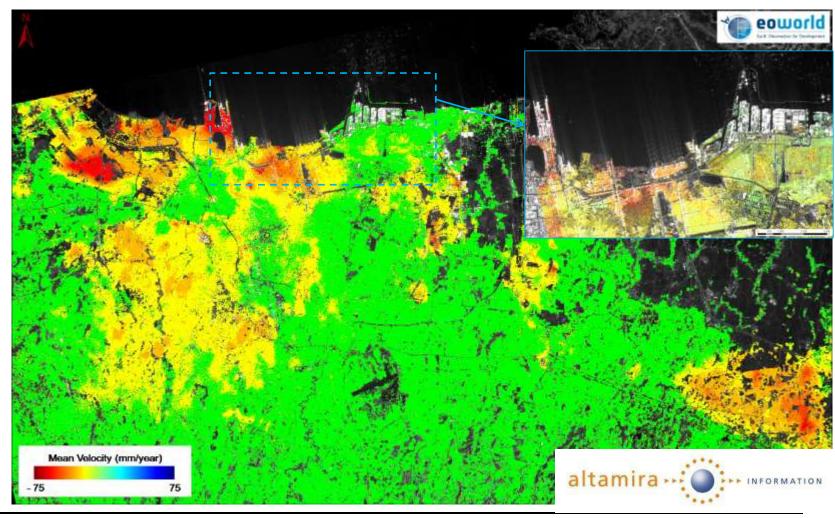
Terrain deformation maps to support mitigation:


Case Study: Analysis of Land Subsidence in Jakarta

t= T0 + n days Descending Orbit

North-South

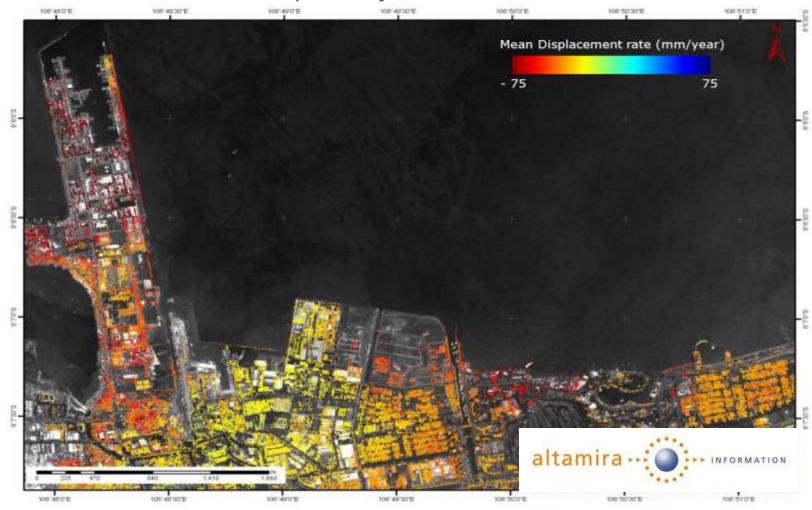
Wend looking


S

Layer model (adapted from: http://ruimtexmilieu.nl/?nID=920)

Understanding hazards to support mitigation:

Case Study: Analysis of Land Subsidence in Jakarta

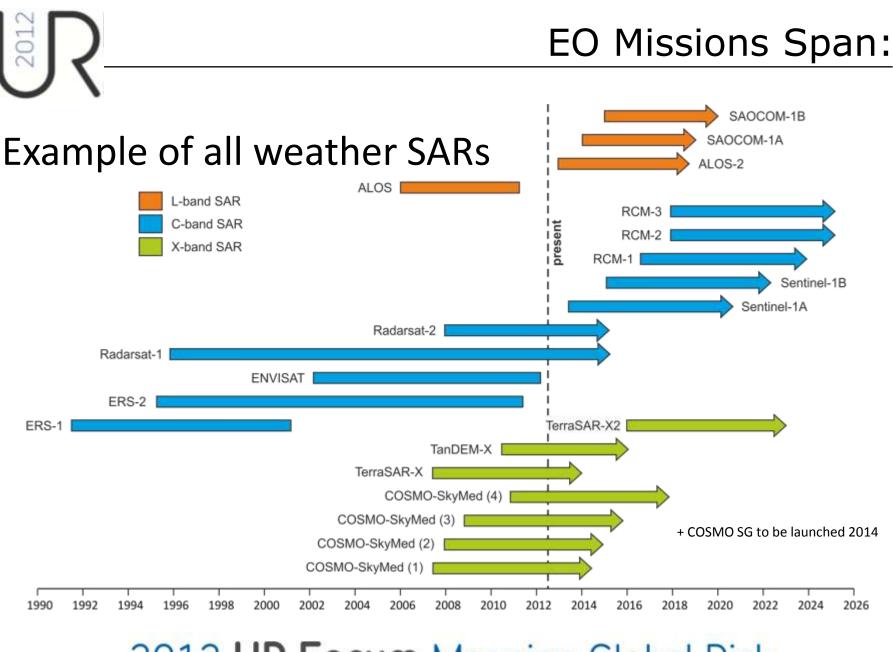


2012

Understanding hazards to support mitigation:

Case Study: Analysis of Land Subsidence in Jakarta

2012

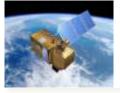

Ability of satellite EO to create global datasets:

C Band HR SAR

(ENVISAT)

X Band VHR SAR (TerraSAR-X)

2012

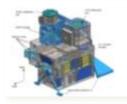


GMES dedicated missions: Sentinels

Sentinel 1 – SAR imaging All weather, day/night applications, interferometry 2012, 2014

Sentinel 2 – Multispectral imaging Land applications: urban, forest, agriculture,.. Continuity of Landsat, SPOT

Sentinel 3 – Ocean and global land monitoring Wide-swath ocean colour, vegetation, sea/land surface temperature, altimetry 2013, 2014+



Sentinel 4 – Geostationary atmospheric Atmospheric composition monitoring, transboundary pollution

2018+

2015, 20

Sentinel 5 and Precursor – Low-orbit atmospheric Atmospheric composition monitoring

- Crisis Response: the International Charter is growing
 → more users (CPAs & Humanitarian community), increased performance, Rapid mapping being adopted by CPAs
- Access for users should be improved in particular in Africa (Universal Access to the International Charter).
- Risk prevention/mitigation: capacities devoted to DRM users are established or being developed (e.g. GMES EMS, 50+ Geological Surveys are engaged via SLAs); quite embryonic in Africa (varies from country to country).
- To deliver Data & VA services requires to address various challenges: cost, data processing capacity, thematic knowledge, raising awareness & capacity building.

201

Thank You !

philippe.bally@esa.int

The ESA Earth Observation programmes

... understanding our planet ... securing our environment ... benefiting our economy

	EO vs airbone concerning DRM		
	Satellite data	Aerial data	
Availability	24/7 world-wide with a rush production capacity Access to imagery globally (independent from politics)	Depending on the authorisations to fly	
Spatial Res.	60-250cm at best using VHR Optical imagery	Up to better than 10cm	
Coverage & Revisit	Revisit :Generally high with up to several acquisitions/day Coverage: from 15km to 150km swath (east-west) for a single scene	Revisit: One off / possibly several times a day	
Timeliness	Between 1 and 3 days after an event	36h after acquisition	
Cost	Access to data at no cost (systematic in the framework of the Int. Charter) not counting data analysis	N/A	