

Session 11: Landslide Risk Assessments for Decision Making

July 2-6, 2012 / Cape Town, South Africa

Community based landslide risk reduction: evidence and challenges

Prof. Malcolm G Anderson

2012

Global landslide risk

Image courtesy NASA

Global risks

• 'risk mitigation pays'

- but too few Cost Benefit Analyses to confirm this (Twigg 2004)

• 'economic losses due to risk are increasing'

-but normalised data shows no trend (Pielke et al 2008)

 'providing the public with information on hazards encourages preparation'

- an unfounded assumption (Paton 2003)

• 'future context is today's world, with modest variations'

- scenario modelling suggests otherwise (Mahmoud et al. 2009)

Disaster related losses

© 2011 Münchener Rückversicherungs-Gesellschaft, Geo Risks Research, NatCatSERVICE

...but normalisation tells us...

...that what matters is

what we build,

where we build

and how we build

2012 UR Forum Mapping Global Risk

Global risks

A framework of emerging risks

	Potential emerging risks				
Drivers increasing landslide risk in developing countries	Scarcity of detailed evidence that mitigation works	Challenges to adopting mitigation	Scarcity of implementation standards		
Lack of regulation and zonation methodologies - not at the scale of the triggering process	Evidence of mitigation impact is rarely substantive. (<i>Benson and Twigg, 2004</i>)	Samaritan's dilemma (Raschky and Schwindt, 2009)	Communication gap between science and practice (Malamud and Petley, 2009)		
(Coburn and Maynard, 2009) Population and urban	Holistic uncertainty needed in models that purport to indicate stability improvements (<i>Rubio et al</i> ,	Political agandas can exhibit instability (<i>Prater &</i> <i>Londell, 2000</i>)	Community contracting standards are rarely defined (Sohail and Baldwin, 2004)		
growth (<i>Twigg, 2004</i>)	2004).	Community residents need to be seen as both 'cause	Monitor implementation		
On-ground-delivery of mitigation very limited <i>(Wamsler, 2007)</i>	Cost benefit analysis requires detailed survey work that is rarely undertaken (<i>Holcombe et al</i> ,	and solution' (World Bank, 2010)	process. (NASA, 2011)		
Reductionist risk modelling and uncertainty (Kunreuther and Useem, 2009)	2011)		(Source: Anderson et al, 2012)		

Risk reduction on the ground

Global risks

"Over the last three decades policy statements by all major agencies have included risk reduction as a pre-condition and an integrated aspect of sustainable development..." UN

"...but when it comes to practical implementation, very little has been done, even when money is available"

The need to act on urban landslides

Global risks

VIOSSaiC

Source: United Nations Department of Economic and Social Affairs, Population Division, World Population Prospects: The 2006 Revision (2007)

Complex models & political uncertainty

Global risks

Not uncommon for one expert to say that there is little to be concerned about...

...whilst another expert will say the same risk is of major significance

(Kunreuther)

Source: Anderson & Holcombe

Need for an *ex-ante* approach

"We're still to some extent sleepwalking our way into disasters for the future which we know are going to happen,

...and not enough is being done to mitigate the damage"

(Holmes, Under-Secretary-General for Humanitarian Affairs, UNEP. 2009).

2012 UR Forum Mapping Global Risk

Global risks

What is unique about MoSSaiC?

Uses existing within-country capacity to reduce urban landslide hazard

Identifies hazard drivers to justify interventions

Community residents engaged throughout

Delivers landslide hazard reduction on the ground

Stresses importance of site supervision

Encourages behavioural change

Promotes evidence-base for landslide hazard reduction

2012

How do we reduce landslide risk?

Science

Reduce the exposure to landslides avoid the landslide hazard

Reduce the landslide hazard (likelihood) good slope management practices, engineering measures

Reduce the vulnerability

communicating the risk, community warning, response and recovery plans...

Urban slope management issues

Science

What is causing the landslides?

Restive are local practices?

Science

Metered water supply but no drainage

Science High density (>70%) unplanned housing

But, roof guttering + proper surface drainage reduce the level of soil saturation to... 14 days per month

...1 day per month

Days per month soil is saturated

Can the hazard be reduced?

201

2012

Start with community knowledge

Community

...with residents and government teams

R produces a landslide hazard map

Community

Community discussion

Community

) New drains capture surface water

mossaics flucia.com agement of Slope Stability in Communities

Drainage Plan for Landslide Risk Reduction Prof. M.G. Anderson PhD, DSc. FICE, CEng. A.M.ASCE Dr E.A.Holcombe MSci, PhD April 2008

ITEM

MAIN DRAIN

GPS WAYPOINT NOTES

WP	northing	easting	eleva tion	notes
001	12.989055	-61.25171	119	drainage from field onto footpath
002*	12.989066	-61.250972	126	Marcia Bynoe: front corner of balcony/step with view of relict landslide scarp directly north (bearing or)
003*	12.989065	-61.250982	125	(duplicate waypointsee WP 002 above)
004*	12.955555	-61.251024	126	concrete steps
005*	12.955888	-61.251025	126	(duplicate waypointsee WP 004 above)
006	12.988468	-61.250418	130	Zila Bynce: Pink House. Cracking of new extension built on fill material: water entering house.
007	12.988392	-61.250952	115	bedrock outcropping
800	12.988435	-01.251088	107	bedrock outcropping – looking downslope on route of flood
009	12.968755	-61.251157	111	Harold James: bedrock outcrapping on earth footpath below house
010	12.988776	-61.251424	102	concrete tank by earth footpath
011	12.989105	-61.251446	110	50m from start of concrete path (WP 014); 30m from WP 001
012	12.969021	-61.201311	113	steps)
013	12.909034	-01.2512/0	00	(dopicale waypointsee wir 012 above)
014	12.000020	-01.231040	90	san or concrete path
VIS	12,900003	-01.201/01	60	 water floods over top of path onto houses downslope
016	12.968264	-61.25155	74	Bouton Compton: guileying between water tank and upslope neighbour's retaining walt abrey level reading up natural drainage route 0 = 38°
017	12.98752	-61.251375	53	Anita Davis: next to drainage route - flooding of vard
018	12.98759	-61.251323	56	4-inch block up-stand required to prevent water flowing off road into houses below (distance = 40m)
019	12.967053	-61.251048	52	flooding from road to back of shop - road blocks with debris after heavy rains (source = natural drainage route flowing from east of WP 006)
020	12,986921	-61.251393	-41	natural drainage from road (WP 019)
021	12.986792	-61.251507	36	culvert under road
022	12.956901	-61.251674	39	path by drainage route
023	12.957656	-61.251221	41	gulley - floods onto road
024	12.98842	-61.251967	69	Ulaana Hazell, water floods back of house
025	12,95612	-61.251994	68	boundary between Coffal Williams and Cuide household – possible route for drain. Flooding at back of William's house, front yand concrete cracking. Neighbours downslope (imelda Hazeli) started execution for relativion wall.
026	12.988057	-61.251858	63	Ouida: boundary with Williams, possible route for drain
027	12.968396	-61.251477	47	Compton: corner of water tank - gulleying in heavy rains. Possible route for drain.
028	12.958451	-61.251424	57	new concrete path with no drainage (see WP 015) Possible route for drain across path – would require breaking up and re-construction of section of path for culvert
029	12.968742	-61.250943	101	possible route of intercept drain following earth path
030	12.988755	-61.250859	103	possible route of intercept drain following earth

Agree plans with community

Community

and with the government and local engineers

Community contractors build drains...

Community

...that capture surface water

Community

Practice

Social Fund

Community

Household

BOTTOM-UP

Community-

based

Drainage

area

Community

Region

....Physical process / Spatial scale

Country

Multiple projects

Terrain

type

2012 UR Forum Mapping Global Risk

Hillside

2012

Does it work / does it pay?

Evidence

Evidence it works

Evidence

Post-MoSSaiC intervention rainfall impact

301	O 10 TRMM Preck	20 30 pitation (PR	AD 50 mm	fr (R5)
		-	De	NG C
25NF		RU		AN A
	A Jor		4	1
201	Je-	31	Pro-	1

				(Year	event)		
	Community (number of households)		Pre-MoSSaiC intervention rainfall impact on slope stability	2006 1 in 4 year, 24 hour event	2007 Hurricane Dean 1 in 5 year, 24 hour event	2008 1 in 100 year, 15 day event	2010 Hurricane Tomas >1 in 500 year, 24 hour event?
				2-3 September 111mm	16 -18 August: 132mm	9-24 October 340mm	30 October 533mm
	Community 1	55	Major slides at low rainfall rates	None reported - Landslide in adjoining area	None reported	None reported - Reactivation of landslide in adjoining area	None reported
	Community 2		Major slide and evacuation of 100 homes in adjoining area	-	None reported	Minor slide within community	Minor slide within community
	Community 3	428	Major slide	-	None reported	None reported	None reported
	Community 4	Modest slides affecting properties	-	None reported	None reported	None reported	
	Community 5	20	Retaining wall failures and significant slides	-	-	None reported	None reported
	Community 6	60	Major previous slide with several lost houses. Subsequent minor landslides.	-	-	-	None reported

Evidence it pays

MOSSAIC PROJECT DRAFT COMMUNITY QUESTIONNAIRE

INTERVIEWER SAY: The reason for this guestionnaire is to work out how much difference the drainage project has made to people in this community. The first two parts of the questionnaire will help give a picture of life in your household and how much a landslide might affect you. The other parts of the questionnaire will look at whether the project has been effective in reducing problems caused by flooding and landslides.

SECTION 1 THE HOUSEHOLD

Household profile 1. Number of people in household Adults - senior citizens .85 Adults - working age 0.3 Children - secondary school / college age Children - prumary school age Babies and infants Number of children attending school Mean 03 Number at secondary school / collage 07 Number at primary school 3. Highest educational qualifications of head Prep 0 Tertiary / university Secondary complete 0.2 0 Secondary incomplete 0.15 0 Primary complete 0.55 Õ 0.1 Primary incomplete 0 None 4. Employment status of adults Mees Number of adults working - permanent job Number of adults working - internutient 107 0.15 Number of adults not working How long have you been living in the 5 community? months Mean: 15.85 years years. Questions relating to accommodation 6. Tenure Prop 0 Owned land and house 0 0 Rented land (built own house on land) 0.8 O Rented land and house 0.2

7.	Number of bedrooms	Mer
1	Number of bedrooms	2.13
8.	Wall type	Prig
0	Brick / block / concrete	01
0	Wood and concrete	0.0
0	Wood	0.3
0	Wattle / Tapia / Makeshift	Ø
9.	Tuilet type	Proj
0	WC to sewer / septic tank	0.83
0	Pit lattine / none	0.15
10.	Light source	Pres
0	Electricity	1
0	Kerosene / none	0
11.	Household possessions	Proj
0	TV	1
0	Telephone	0.4
0	Video / DVD	0.9
0	Stove	1
0	Fridge	1
0	Washing machine	0.8
0	Car / pick-up	0.15
Dir	ect benefits from project	
12.	Physical benefits	Prig
0	Drain adjacent to house	0.6
0	Footpath access to house	0.4
0	Roof guttering and downpipes	0.81
0	Water tank	Ø
13.	Employment on project	Prop
0	Awarded contract for construction / installation	n 0.13
0	Employed by contractor as mason / carpenter	0
0	Employed by contractor as labourer	0.23
1	Number of days employed M	eau: 34.5

Evidence

Benefit cost ratio of ~2.7:1

Next steps

Undertake future scenario modelling

Acquire data on landslide mitigation relevance at the regional level

Develop a delivery mechanism

Prof. Malcolm G Anderson

Contact

Contact: <u>mossaic@emailplus.org</u>

Malcolm G. Anderson and Elizabeth Holcombe

Landslide RISK REDUCTION Managing Disasters in Small Steps

THE WORLD BANK

Practice

Social Fund

Community

Household

BOTTOM-UP

Community-

based

Drainage

area

Community

Region

....Physical process / Spatial scale

Country

Multiple projects

Terrain

type

2012 UR Forum Mapping Global Risk

Hillside